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ABSTRACT. Multigrid algorithms are developed to solve the discrete systems 
approximating the solutions of operator equations involving pseudodifferential 
operators of order minus one. Classical multigrid theory deals with the case of 
differential operators of positive order. The pseudodifferential operator gives 
rise to a coercive form on H- 1/2(Q) . Effective multigrid algorithms are devel- 
oped for this problem. These algorithms are novel in that they use the inner 
product on H-1 (Q) as a base inner product for the multigrid development. 
We show that the resulting rate of iterative convergence can, at worst, depend 
linearly on the number of levels in these novel multigrid algorithms. In ad- 
dition, it is shown that the convergence rate is independent of the number of 
levels (and unknowns) in the case of a pseudodifferential operator defined by a 
single-layer potential. Finally, the results of numerical experiments illustrating 
the theory are presented. 

1. INTRODUCTION 

The goal of this paper is to develop a technique for defining and analyz- 
ing multigrid algorithms for solving equations which involve discretizations of 
pseudodifferential operators of negative order. Standard multilevel methods 
most often apply to discretizations of differential operators of positive order 
(cf. [1-4, 7-9, 16, 17]). 

Let Q be a polygonal domain in R2. For nonnegative real s, let HS(Q) 
denote the Sobolev space of real-valued functions with norm lIls (see [14]). 
In addition, we shall use Sobolev spaces of negative index. For the purpose of 
this paper, we shall define H` (Q) to be the set of functionals on H' (Q) for 
which the norm 

IIvII-= sup (v,) 
OEHI (Q) 1 0 11 t 

is finite. Here (, *) denotes the inner product in L2(Q). For 0 < s < 1, the 
spaces H-s(Q) are defined by the real method (K-method) of interpolation 

Received by the editor March 12, 1992. 
1991 Mathematics Subject Classification. Primary 65N30; Secondary 65F10. 
This manuscript has been authored under contract number DE-AC02-76CH0001 6 with the U.S. 

Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free 
license to publish or reproduce the published form of this contribution, or allow others to do 
so, for U.S. Government purposes. This work was also supported in part under the National 
Science Foundation Grant No. DMS-9007185 and by the U.S. Army Research Office through the 
Mathematical Sciences Institute, Cornell University. 

(? 1994 American Mathematical Society 
0025-5718/94 $1.00+ $.25 perpage 

461 



462 J. H. BRAMBLE, ZBIGNIEW LEYK, AND J. E. PASCIAK 

[13] between L2(Q) and H- (Q). These spaces are Hilbert spaces, and we 
shall let (., .) - be the corresponding inner product. 

As a canonical example of a pseudodifferential operator of negative order, 
we consider an operator which is defined in terms of a symmetric bilinear form 
F(., *) on H-1/2(a). We will assume that this form satisfies the following 
coercivity and boundedness inequalities: 

(1.1) C0 jjvjj_112 < f(v, v) < C1 jjvjj_112 for all v E H- /2(2). 

Here and in the remainder of this paper, C with or without slubscripts denotes 
a generic positive constant which can take on different values in different places. 
These constants will always be independent of mesh sizes and the number of 
levels in subsequent multigrid schemes. 

Multigrid schemes will be developed in this paper for the efficient solution 
of the problem: Given a bounded linear functional F on H- 1/2(), find U E 
H- 1/2(Q) satisfying 

(1.2) Y(U, 0) =F(O) forall 6 E H-1/2(Q). 

This problem has a unique solution by the Riesz Representation Theorem. 
The basic philosophy of a multigrid/multilevel algorithm is that simple re- 

laxation schemes can be used to reduce the high eigenvalue components of the 
errors while a coarser grid problem is used to reduced the smooth components. 
This works very well in the case of differential operators of positive order since 
the high eigenvalue components of the differential operator correspond to highly 
oscillatory components of the error and thus all components are reduced either 
by smoothing or correction. In contrast, in the case of pseudodifferential opera- 
tors of negative order, the high eigenvalue component is smooth and thus neither 
relaxation nor coarse grid correction reduces the oscillatory components. 

The solution to the above problem is to use a base inner product which cor- 
responds to a weaker norm than that induced by the form Y(., .). We use the 
norm in H-' (K2). This effectively changes the relationship between eigenvalues 
and eigenvectors so that the eigenvectors with large eigenvalues correspond to 
highly oscillatory components in the eigenspace decomposition. 

Smoothers for the multigrid algorithm are developed in terms of discrete 
inner products which are equivalent to the inner product in H-1(K2) on the 
respective subspaces. The discrete inner products are defined in ?3 in terms 
of a discretization of a second-order problem. The use of smoothers involving 
differences for this type of problem was suggested earlier in [12] although no 
supporting theory was included. 

There are three basic theories for providing estimates for V-cycle multigrid 
algorithms. The first is the so-called "regularity and approximation theory" 
and provides estimates as long as elliptic regularity results are available for 
the underlying operator Y [2, 3]. The second theory requires the weakest 
hypotheses but gives rise to estimates which depend on the number of levels in 
the multigrid algorithm [7]. The third theory does not require elliptic regularity 
and often leads to uniform estimates on the rate of iterative convergence [4]. 

We prove the conditions required for the application of the "no-regularity" 
theory of [7] in ?4 provided that (1.1) holds. In ?5, we reduce to the case when 
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the form % is given by the single-layer potential 

(1.3) 7(u, v)=jJ U(S1)v(i2) ds, ds2. 
1 S1 -S21 

We will show that (1.1) holds, and hence [7] can be applied. We next apply [4] 
to develop uniform multigrid convergence estimates in the case when Q2 is a 
polygonal domain in R2 . We note that integral operators of positive order are 
considered in [19]. 

Finally, the results of numerical experiments are given in ?6. These results 
are in agreement with the theory of earlier sections. 

2. THE MULTIGRID ALGORITHM 

In this section, we describe the multigrid algorithm following [3]. We assume 
that we are given a nested sequence of finite-dimensional inner product spaces 

A0 C A1 C ... C .11j c H- 1/2(l). 

As earlier described, let "(-, *) be a symmetric positive definite bilinear 
form on .#j satisfying (1.1). We shall develop multigrid algorithms for com- 
puting the solution of the problem: Given a linear functional F on .4'j, find 
u E 1#j satisfying 

(2.1) %(u, 0$)= F(0) forall qE Aj. 

We describe the multigrid algorithms in terms of certain operators. To this 
end, we first define 'k : V-4k I Ak by 

(2.2) (U, V)_1 = Y(U, V) for all u, v E 4k. 

In addition, we define the projectors 39k: H-' (El) 4 Ak and Pk: H-1/2(Q) 
Ak by 

(AkW, 0)-1 = (W, 0)-l 

and 
W(Pkw, 0) =Y(W, 0) 

for all q E Ak 
The final ingredient in a multigrid algorithm is a sequence of smoothing 

operators. These operators are defined in terms of additional discrete inner 
products on Ak which will be denoted [, *]k, k = 1, ...j, . The smoothing 
operator Rk: `4 A '4% is then defined by 

(2.3) [RkW, 1]k = AI(w, 0)-, for all 0 E Ak. 
Ak 

Here Ak is an upper bound for the eigenvalue 

k= SUP ( 0) 

The assumption on Ak implies that for all 0 E .k, 

%(RkkO, 6) < Al/2 [Rk%k6 Rkk]Ol F12 %(6, 6)1/2 
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and hence 

(2.4) Y(RkykO, 0) < Y(O, 0)- 

The inequality (2.4) shows that the smoothing operator is properly scaled [3]. 
In addition, 2k should be bounded by a fixed multiple of Ak . 

In standard applications, it is often more effective to use smoothers defined 
by variations of Gauss-Seidel iterative methods [5]. However, in the case of the 
integral equation application of this paper, Gauss-Seidel smoothing is inappro- 
priate whereas the smoother defined by (2.3) is both computable and theoreti- 
cally justified. 

The multigrid algorithm is defined in terms of a sequence of operators Bk: 

Ak 84 Ak which "approximately" invert 'k . The following algorithm provides 
the simplest V-cycle algorithm. 

Algorithm 2.1. For k = 0, set Bo = %1. For k > 0, Bk is defined in terms 
of Bk-I as follows: Let g E k4. 

(1) Set 

(2.5) xi = Rkg. 

(2) Define x2 = X1 + q, where 

q = Bk-l3'k-1(g -kXl)- 

(3) Finally, set 
Bkg = X2+ Rk(g-PkX2). 

The multigrid algorithm is presented this way for theoretical purposes. Even 
though the use of the inner product on H-'(Q) is often not computationally 
feasible, it is possible to implement the above algorithm in practice provided 
that the inner products [, *]k are appropriately defined. These inner products 
are defined in ?3. They are critical from both the theoretical and implementation 
points of view. The concrete realization of the algorithm in terms of matrices 
is also given in ?3. 

The first and last step in the above algorithm correspond to smoothing. The 
second step is the coarser-grid correction step. More general versions of this 
algorithm involving increased smoothing on the various levels as well as more 
iterations in the coarser-grid step are defined in the usual way (cf., [1, 3, 11, 
15]). Our theory extends to these algorithms as well (cf. [7]). 

Typical presentations of the multigrid algorithm directly give rise to an iter- 
ative process with a linear reducer. This linear reducer is equal to I - Bj ?j (cf. 
[4]). Thus, the usual multigrid reduction process applied to the problem 

YjV = f 

is equivalent to the simple linear preconditioned iterative scheme 

vi+1 = Vi + Bj(f- Yji), i = 0, 1, .. 

with Bj defined by Algorithm 2.1. Thus, our algorithm is the usual symmetric 
V-cycle multigrid algorithm described in a notation which is convenient for our 
analysis. Note that Bk is clearly a linear operator for each k. 
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Nonsymmetric cycling algorithms are defined by avoiding Steps 1 or 3 (cf. 
[3]). Both the symmetric and nonsymmetric versions are covered by the analysis 
to be presented. The symmetric operator Bj given above can also be used as a 
preconditioner in, for example, the conjugate gradient algorithm. 

3. THE DISCRETE INNER PRODUCTS 

We define the discrete inner products [, *]k used in the definition of the 
smoothing operators in this section. As we shall see, there are two distinct 
cases depending on whether the functions in Ak are continuous or not. The 
discrete inner product will always be defined in terms of a difference operator 
Ak : - " ek - 

We shall only consider multigrid algorithms for finite element approximations 
to (1.2) in this paper. Because the form %"(-, *) is so weak, the finite element 
approximation subspaces need only be in H-1/2(Q). However, for simplicity, 
we shall first consider the case when Ak consists of continuous piecewise linear 
finite element functions. 

To this end, we start with a coarse triangulation {To} of Q. Assuming that 
{-Tr1 } has been defined, the finer triangulation {-Ti} is defined by breaking 
each triangle in {T- I} into four by connecting the midpoints of the sides. The 
space lk4, for k = 0, ...j, , is defined to be the set of functions which are 
piecewise linear with respect to {zTi} and continuous on Q. 

To avoid the inversion of Gram matrices in the multigrid implementation, we 
next consider a diagonal inner product approximating the L2(Q) inner product 
on the subspace. Let (, *)k be defined for v E Ak by 

(V, v)k =-E |ZIT [V(Xk' 1)2 + V(Xk'2)2 + V(Xk' 3)2]. 

Tk 

Here, Tz il denotes area of Tk and {xk' }, 1 = 1, 2, 3, denotes the vertices of 
Tk . It is known that 

(3.1) I(v, W)k-(V, w)I < Chk IIv|II IIWII for all v E 4k, W E 4, 

where hk ( hk = 2-kho ) is the mesh size of the kth mesh. It is also immediate 
that 

(3.2) c (v, V)k < (v, v) < C (v, v)k for all v E lAk 

The discrete form [, *]k is defined in terms of the finite element discretiza- 
tion of a second-order problem. For v, w in HI (Q), let 

(3.3) A(v, w) = (Vv Vw + vw) dx. 

Clearly, A(,*) is symmetric and positive definite on HI (Q2) and 

liullI = A(u, U)1/2 for all u E H (Q). 

For k = 0, j, let the operators Ak:J(k j-+ Jk be defined by 

(3.4) (AkW, q)k = A(w, 0) for all w, q E Ak. 
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The operator Ak is clearly symmetric (in both the A(., *) and (, *)k inner 
products) and positive definite. In this case, the discrete inner product used in 
the multigrid algorithm is defined by 

(3.5) [U, V]k = (A1u,V) for all u, v E Ak. 

As we shall see later, the implementation of the multigrid algorithm using this 
discrete inner product only requires the evaluation of the action of Ak (not 
Ak- 1 ). The next lemma shows that the norm corresponding to this inner product 
is uniformly equivalent to the norm in H-1 (Q). 

Lemma 3.1. Let [, ],k be defined by (3.5). There exist positive cdnstants Co, C1 
which are independent of j and satisfy 

(3.6) Co lIv K ? [v, V]k < C1 lv II-II2 
The inequalities (3.6) holdfor all v E Ak and k = 0, ..., j. 

Proof. Let Qk denote the L2(Q) orthogonal projector onto Ak. It is well 
known that (see, for example, [10]) 
(3.7) 11 (I - Qk)w II < Chk IIwILI IIQkwIll < C IIWII1 

for all w E H1(Q). Moreover, it easily follows from (3.7) and the fact that 
A4 c H1(Q), that 

(3.8) C2 IIwI2 < sup (W, 0)2 < IwI12 for all w E Ak. 

The constant C2 is independent of k. Let v be in 4k . We note that 

(v, A_ 1/2q)2 (V , 6)2 
(3.9) [v, v]k = (Aj1v, v)k = sup k k= SUp k 

k 
0 ~qE Afk (q$, O)k 0EAk(, 

Using the well-known inverse property, 

A(q, 0) < chk2 Iq1112 for all q E Ak, 

and (3.8) implies 

(3.10) lvi| = sup ( 2 < Chk2 s ChA(, < ChkIlv 

The same argument and (3.2) gives that 

(3.1 1) ||v || < Chk 2 sup k(g b 

Applying (3.1) and (3.10) gives 

(3.12) I(v, )kI < i(v, )k - (v, 0)1 + i(v, 0)1 
(< Chk IIVII i10111 + IIVII-l 110111 < C iVIIl_ 110111 

Combining (3.9) and (3.12) proves the upper inequality of (3.6). 
For the lower inequality, because of (3.8), we need only show that 

(3.13) sup < C sup k 
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Applying (3.1) gives 

(3.14) I(v, 0)1 < (v, 0)-(v, 0)kI + (v, 0)kI 
< Chk IIVII 110111 + I(v, 0)kI- 

By combining (3.1 1) and (3.14), the inequality (3.13) follows. This completes 
the proof of the lemma. o 

We next consider the case when the subspaces are discontinuous functions. 
In this case we assume for simplicity that Q is a rectangle in R2. We divide 
this rectangle into a rectangular mesh to define the partitioning {Ti}. Subse- 
quently finer meshes are defined by mathematical induction. Given {Tk- 

the rectangles of {Ti} are defined by breaking each rectangle in {Tk- } into 
four congruent smaller rectangles. Functions in Ak are defined to be piecewise 
constant with respect to the mesh {zk }. 

In this application, we do not require the introduction of a discrete L2(Q) 
inner product, since the Gram matrix for Ak (with the natural basis) is already 
diagonal. The discrete operators Ak are defined directly in terms of differences. 
Functions in Ak are determined by doubly indexed arrays of coefficients {cij}, 
(i, i) E Ak . The set Ak consists of the indices labeling the rectangles in T. 

Ak is defined to be the symmetric difference operator with diagonal 

(3.15) (Akc c) = hk 
2 

C?.j + (Cij _Ci, j+1 )2 + E(Cij _Ci+I, j)2. 
(i, j)eAk 

Terms are included in the last two sums above if and only if both of the coef- 
ficients' indices are in Ak'. Note that Ak is the five-point difference operator 
with appropriate modification near the boundary. We define [, *]k by 

(3.16) [v, W]k= (Aj1v, w) forall v, w EX 

We then have the following lemma. 

Lemma 3.2. Let Ak be defined by (3.15). Then (3.6) holds for [', ]k defined 
by (3.16). 
Proof. Let v be an arbitrary function in 4k . We first note that 

(3.17) [v, v]k= (A v, v) = sup (v, q)2 IV,Vlk= Gk O-A (Akd, kY 

We again let Qk denote the L2(Q) orthogonal projection onto 4k . It is easy 
to check that 

(Ak Qk, Qk6) < C 110612 for all 0 E H1(Q). 
Consequently, 

,IV 11- = sup (V, Qk)2 

< C SUp (AQ , Qk 0) = C(Aj 1v, v). 

Let q be in 4k . We define a shifted rectangular mesh {f } by connecting 
the centers of the original rectangles and let ik denote the union of the shifted 
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FIGURE 1. Local extension regions 

rectangles contained in Q (see the rectangular mesh formed by the dashed 
lines in Figure 1). Note that i2k differs from Q by a strip of width hk12. 
Let <:D denote the function which is continuous on lk , piecewise bilinear with 
respect to the shifted rectangles, and interpolates 0 on the vertices of the shifted 
rectangles (these vertices are labelled x in Figure 1). We extend (D to all of Q 
in a piecewise bilinear fashion. For example, the bilinear function (D on the 
shifted triangle tk in Figure I is extended bilinearly into the shaded region. 
Figure I (a) illustrates the case of a corner of Q while Figure I (b) illustrates 
the case of an edge of Q. This extension is also denoted by (D. It is easy to 
see that (D E H' (Q) and furthermore, it is elementary to see that 

(3. 18) c(Ak iiD, ) 112 < C(Ak,)' 110 - (DI < Chk|? l 

k I~0 I kI ) 1 11 

for all E Ak - 

We now prove the upper bound of (3.6). By (3.18), 

(3.19) 1(v, O)j < (v, 0 - (D)) + l(v, D)l 

FIUR(.hoaletesonrgin 

< (k IIVIIl + li |_1 ) ||(10| 1 < C(hk IIVI|| + ||V ||_1 )(AkO, 0)/ 

Thus, using (3.17), the upper inequality of (3.6) will follow if we prove that 

(3.20) i rVNo < Chf fm baV|h-h 

For any d 0 E n k, there exists a function w E H'k(Q) which has the same 
average values as 0 on the rectangles of iTl q and satisfies 

(3.21r ) (es e la < Chin 1Fige1). 

In fact, p can be constructed by taking linear combinations of smooth functions 
supported on the rectangles of IsTi e. Thus, 

(3.22) (A k ? k) ? C(Ak p k, <)Ch- ChkjjvjlII 

for all q5sp e - 

< C(hk lvii + III E)I4kI ?1(k jj +Iv1..l)A1 4) 
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This proves (3.20) and hence completes the proof of the lemma. O 

We now present the matrix form of Algorithm 2.1, since this elucidates its 
computational implementation. A common notation for the two cases can be 
developed if we define ( k, *) = (', *) in the case when .k consists of discon- 
tinuous constants. 

We shall use a bar for denoting matrices and vectors. Let nk = dim(.k) and 
{q$ }nkI be the natural basis functions for Jk . Note that by scaling the basis 
functions, we may assume that (ik I 1k)k = dil, where 6i, is the Kronecker 
Delta. Let 

Ak = {(Akki 4 0k)k }i= 

and 
k= { k k )} 1=1-' 

In addition, let the matrix Ck = {c/i} be defined from the coefficients {cil} 
satisfying qi = Znk1 Cilq+1. 

In terms of matrices, (2.1) can be represented 

(3.23) 2u = F. 

Here, u is the vector of coefficients in the expansion of the function u in the 
basis {0j},and F is the vector {F(F0)} . 

We consider the matrix operator Bj defined by the following algorithm. As 
we shall see in the subsequent proposition, this algorithm provides a concrete 
realization of the operator Bj . 

Algorithm 3.1 (Matrix form of Algorithm 2.1). 
Set Bo = %-1. Assume that Bk-l has been defined and define BkG for 
G e Rnk as follows: 

(1) Set 

(2) Define x2 =.xI + Ck_Iq, where 

q = Bk-lCkl1(G - k 

(3) Finally, set 
BkG = X2 + A4lAk(G -_ X72). 

Proposition 3.1. Let v E dk and v denote the vector of coefficients for the 
expansion of the function v in the basis {q$}. Then, Bk,jkv is the vector of 
coefficients for the expansion of the function Bk?kv. 
Proof. The proof is by induction. The result is obvious for k = 0. Let k be 
greater than zero and let v and v be as above. We consider applying Algorithm 
2.1 to Ykv and Algorithm 3.1 to %kv. In the first step of Algorithm 2.1, we 
compute the function xi satisfying 

(3.24) [xl, 6]k=(A,j1x', 0)k= A- Y%(v, 0) for all 0 E Ak- 
In contrast, G= YkV in Algorithm 3.1. Let G E 1k satisfy 

(3.25) (G, O)k = %(V, 0) for all 0 E Ak. 
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Note that G is the vector of coefficients for the expansion of G in the basis 
for Ak . Combining (3.24) and (3.25) and changing variables gives 

(x, i )k = A- (AkG , O)k X ,nk- 

This means that the coefficients of xl (denoted by xI ) satisfy 

l= AklkG = Ak lAkG. 
This coincides with the first step of Algorithm 3.1. 

To compare the results of the second steps of the algorithms, we note that the 
previous conclusion immediately implies that G - 1kx = k (v - xl) equals 
the vector {?(v - xi, q$k)}. Consequently, Ck_l(G - nxfl) is the vector 
{>(V - X, q4 1-)}. However, 

(3.26) kY(v-xl 
k 

= (k-AP-l(V -X ) k_ 0)- 

Note that the right-hand side of (3.26) is 7k-_ applied to the coefficients of 
Pk- (v - x 1) expanded in the basis for 4k- I. Thus, by the induction hypoth- 
esis, q in Algorithm 3.1 is the vector of coefficients (with respect to the basis 
for ZkA I ) of the expansion of 

Bk-lyk-Pk-(V -XI) = q. 

Consequently, X2 defined by Algorithm 3.1 gives the coefficients of X2 defined 
by Algorithm 2.1. 

The proof that the final step of Algorithm 3.1 results in the coefficients of the 
function developed in the final step of Algorithm 2.1 is similar. This completes 
the proof of the proposition. o 

Remark 3.1. The proposition immediately implies that for all v E .X#j, 

( (I - BDj)v) * v = /((I - Bjj)v, v) 

and 
(Yjv) * v = (v, v). 

Thus, contraction estimates for I-Bj7j and estimates on the condition number 
K(BjYj) lead to the same results for their matrix counterparts. 

4. "NO-REGULARITY" MULTIGRID ANALYSIS 

We apply the theory of [7] to develop a convergence theory for Algorithm 2.1. 
To do this, we need operators d'k: Aj 4 4k with @4j = I and satisfying 

(4.1) ilk@k_l)U,l12 < C2Ak>U )frk=1 .,j 
(4.2) 2 7(kkU, dkU) < C3Y(u, u) for k = 0, ...j, - 1. 

The inequalities (4.1) and (4.2) hold for all u e A'). 

Lemma 4.1. Let Ak consist of continuous piecewise linear functions on triangles 
as described in thefirst application of the previous section, and set d'k = Qk. Then 
(4.1) and (4.2) hold with constants C2 and C3 which are independent of j. 
Proof. The inequalities (3.7) and duality immediately imply that 

II(I-Qk)wlIK1 < Chk |Iw|I for all w E L2(Q), 
(l4. IIQkWIl < ?C IIWIKl for all W E H-1'(). 
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Applying the real method of interpolation gives 

1(1 - Qk)w11i ?< ch,j jjwj.112 for all w E H l/2(Q). 
Let v be an arbitrary function in #j . Applying (1.1) gives that 

II(Qk - Qk-I)vII-i ? 211(I-Qk)vII_1 + 2 I(I -Qk-))V 1 

< Chk livII1V2 ? Chk7(V, V). 

By interpolation and (4.3), 

Y(QkW, QkW) < C 1l QkW 11_1/2 

< C IIwIIl12 < C7(w, w) for all w E H-1/2(Q). 
To complete the proof, we need only show that 

(4.4) hk < CA-'. 
By definition, 

)Ak= SUP <Csu 12 

qkEASU [4) q$ - CEfk II0112 
By (3.8) and (3.10), for 4) k X4, 

Ik/4_112 < C 114)11 14II1 < Chj' /Iq$//11 

This completes the proof of the lemma. O 

Lemma 4.2. Let Ak consist of discontinuous piecewise constant functions on 
rectangles as described in the second application of the previous section, and set 
Mk = YAk. Then, (4.1) and (4.2) hold with constants C2 and C3 which are 
independent of j. 
Proof. As in the proof of Lemma 4.1, it follows from (3.22) that hk ? C2k-1 . 
In addition, for w E L2(Q), 

(4.5) 1(I - Qk)w i = sup (W, (' - 
Qk)| ) < Chk 1wIIWI 

Since (I - @'k)w is the minimizer, 

1 (I - k)W||_IIj1 < Chk IIW II- 

The operator (I - d?k) is clearly bounded from H-1 (Q) into H-1 (Q), and 
hence by interpolation, 

j/(I - 'k)wlIl- < Ch2 11w/K12 for all w e H l/2(Q). 
Inequality (4.1) follows from (1.1). 

For inequality (4.2), we first note that by (3.22), 
II(d'k - Qk)wll < Ch-7 II(dk - Qk)wII_j < C IIwlI for all w E L2(Q). 

Consequently, Mk is bounded both as an operator on L2(Q) F-+ L2(Q) as well 
as an operator on H-1 (Q) -* H- (Q). By interpolation, 

II&kw lKi1/2 < C IwI W-1/2 for all w E H-l2(Q). 
Inequality (4.2) now follows from (1.1). This completes the proof of the lem- 
ma. a 

The following theorem is a consequence of [7] and Lemmas 4.1 and 4.2. 
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Theorem 4.1. Let Ak be as in ?3. There exists a constant C not depending on 
j such that 

O < 7((I-B1jj)u, u) < ? j1(u, u) for all u E Jj, 

where 
3, = 1 - (CjA1. 

In terms of matrices, 

O < (/j(I-B2)v)*v? ( < 5j(jv)) *v for all v E Rk. 

Proof. We need only verify that the smoothing operators satisfy appropriate 
conditions. The appropriate upper bound for the smoothing operator is given 
by (2.4). By the definition of Rk and Lemmas 3.1 and 3.2, for w E A4, 

IIwII-1 = )k[Rk W, R k W]k < CAk(RkW, W)-1. 

This provides the appropriate lower bound and completes the proof of the the- 
orem. 51 

Remark 4.1. The above theorem provides an estimate for the contraction asso- 
ciated with the linear preconditioned iteration 

ui+1 = ui + Bj(F - jui), i = O, 1. 

In fact, the error ei = u - ui satisfies 

(2te-i) * e-i < 052i(ge-o) * 0?-. 

In addition, the theorem implies that the condition number K(Bj7) is bounded 
by Cj. Such a bound implies that the corresponding preconditioned conjugate 
gradient iteration also converges rapidly. 

Remark 4.2. There is no problem extending the results of this section to the 
case when Q consists of a union of polygonal faces and forms the boundary of 
a domain in R3. 

5. THE CASE OF A SINGLE-LAYER POTENTIAL 

In this section, we consider the case when the form 2' is defined from the 
single-layer potential (1.3). It is first shown that (1.1) holds. Next, conditions 
for the application of the theory of [4] are verified and lead to iterative con- 
vergence estimates for the multigrid algorithm which are independent of the 
number of levels. 

Let 59 be a smooth boundary of a domain in R3 . It was shown in [18] that 

(5.1) C0 IIvI-2 ? (/')(V, v) < C1 liv IIVl/2, for all v E H 
where We) is defined by 

5)(U, v) = J U(51)V(5I) dsI ds2. 

In addition, they also showed that the operator 7) defined by 

(X')U)(52) = J r s21) ds1 
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is an isomorphism of Hs (5") onto Hs+l (5) for all real s . This implies that 
there are constants Co and Cl such that 

(5.2) Co IIwIIs,Y < ? II(sY)wIIs+,'Y < C1 IIwIIs' for all w E Hs(5). 

The above norms denote the norms in Hs (Y) and Hs+l (Y) . 

Remark 5.1. The inequalities (5.1) hold for Q = 5 when Y consists of the 
union of polygonal faces and is the boundary of a region in R3 . Consequently, 
we can apply the results of ?4 in this case (see Remark 4.2). 

The plane domain Q can be extended to be the smooth boundary of a 
bounded domain in R3. We shall denote this extended surface by 5Y. The 
following lemma will be critical in the analysis provided in the remainder of 
this section. Its proof will be given at the end of this section. 

Lemma 5.1. Let ar E L2(Q2) and a denote the extension by zero of a to L2(5y). 
There exist positive constants C2 and C3 such that for s E [-1, 0], 

C2 Ika Is < 11Ils ,yi < C3 IlojrIl for all a E Hs((Q). 

By (5.1), "(a , a) = 7/(y)*, v) is equivalent to 11612 . Butby Lemma 
5.1, IIIT 11 - 1/2, Y is equivalent to 11a 11 - 1/2, and hence (1.1) holds. 

We next verify inequality (3.5) of [4]. For our application, this translates 
into proving the inequality 

(5.3) ,k k IIXvII-1 < (Cckl)2?(v, V) for all v E A. 

The above inequality must be proved for / < k and some c < 1 not depending 
on 1, k, or j. 

Let v be an arbitrary function in .Xl. We first note that 

II vIkV I = (kV, kV)- I = >(V, V kV) 

= (71-,)VJ 7kV)W < IIlKY-,2JiIIl, V Y 

where (., .)w is the inner product in L2(5"). Applying (5.2) and Lemma 5.1 
gives 

I|k | < C ||V | | i 117il-1 

and hence 

(5.4) ||v ? C |vj|| 

The inverse inequality 

(5.5) llull2 < Ch71 IIuII1l2 for all U E Xl 

easily follows from standard inverse inequalities, convexity and duality in the 
case when XI consists of continuous piecewise linear functions. In the case of 
discontinuous constants, (5.5) still holds. This can be seen by noting that for 
0 E Al, the function e constructed in the proof of Lemma 3.2 satisfies the 
inequality 

11011 < c 11011 . 

By convexity and (3.21), 

118111/2 < Ch1/2 21611. 
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Consequently, for u E A , 

ul =1 Sup (u, 9) < Ch- I/2 Sup (u,'8) < Ch- 1/2 IIUII-1/2 
OEJ1 11611 OE-Z, 11EIIl/2 71/ 

Combining (5.4) and (5.5) gives 

ik1 IIXkvII2 < C(Akhl) 17(v, V) for all v E A. 

The proof of (5.3) will be complete once we show that 

(5.6) Al 1 < Chl. 

Let z be as in Lemmas 4.1 and 4.2. In either case, it was shown that d, 
was simultaneously bounded as an operator on both H-I (Q) and L2(Q) (with 
bounds which are independent of 1). Thus, it follows from (3.2), Lemmas 3.1 
and 3.2 that 

(iw, zw) 1/2 < C 11wII for all w E L2(Q), 

(A7ldllw, @,w)l12 < C IIwI11_ for all w E H-' (Q). 

Since Al is positive definite and symmetric with respect to (, )l, its powers 
define a Hilbert scale. Using the real method of interpolation gives 

(Al 112& W, W)1/2 < C IIWIK1/2 for all w E H-1/2(Q). 

We then have by (1.1) and Lemmas 3.1 and 3.2, 

A=(S, 6) 

> C sup (A716, 6) = C sup (A'6 6) > Ch'. 
OEei (A710, 6), OE./*' (6, 6), 

The last inequality above follows easily from the fact that the largest eigenvalue 
of Al is bounded from below by ch2 . This completes the proof of (5.3). 

The second condition which one must verify before applying [4] is as follows. 
We must show that there is a constant Co not depending on j and satisfying 

VF 
I 

(5.7) Y (v, v) < Co [/(Pov, v) + kA /kV for all v E -A. 
k=1 

Let Pk denote the orthogonal projection operator onto the subspace Ak with 
respect to the inner product (, *)-1/2 . Lemma 3.1 of [4] shows that (5.7) will 
follow if we prove the analogous inequality for the equivalent form (, *)-1/2, 
i.e., (5.7) follows from 

(5.8) (v, v)_12 < C (PO v)_1/2 + ZAk 
k for allyV E Oj. 

k=1 

Here, 7k: Ak ;-+ k is defined by 

(5.9) (kV, 0)-l = (v, 0)-1/2 for all 0 E k. 
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By Remark 3.1 of [4], inequality (5.8) will follow if we prove full regularity 
and approximation for 1 . More precisely, it suffices to show that there exists 
a constant C not depending on k = 1, 2, ...j, satisfying 

I 2 
(5.10) ((I-Pk-I)v, v)_1/2 < CAj ||v for all v e k. 

It is well known that the spaces Hs (Q) form a Hilbert scale, and hence there 

is an unbounded selfadjoint operator 7' defined on H-I(Q) (with domain 

L2(Q) )such that for y E [0, 1], 

11w11 _ l+Y = |7/w || for all w E H-1+Y (Q). 

Let w be an arbitrary function in H-1/2(e) It follows that 

J)W sup (?7/'_(I - P'k.)W , q0) 
ll 11-I 0~~EL2(Q) 11 

(5.1 1) (I P^) 1 kI 
((I-Pk-l)W, (I-Pk-1>))-1/2 

=sup - 11 

By convexity, the L 2(Q) boundedness of Qk- l, (4.3) and (4.5), 

(I - Qk-1)011-112 < Ch1/2 11q11 for all / E L2(Q). 

Using the minimization property of the orthogonal projector gives 

(5.12) ((I-Pk-1)0, 0)-1/2 < ((I-Qk-1)0, (I- Qk-1)0)-112 

< Chk 110,12 for all 0 e L2(Q). 

Combining (5.1 1) and (5.12) with the inequality hk < CA1-1 gives 

| -Pk_ ) 1 || <Ck ' IPk-l)w, w -il/2 . 

Hence, for v E .k4, 

((I - Pk-I)V, V)1/2 = ((I - Pk-l)V, 4kV)-1 

< k c |v K ((I -Pk-1)V, v)I1/2- 

The inequality (5.10) immediately follows. This completes the proof of (5.7). 
The following theorem is a consequence of (5.3) and (5.7) [4]. 

Theorem 5.1. Let Bj be defined by Algorithm 2.1 with %'F defined by (1.3). 
Then 

0 < 77((I - Bj1)v, v) <?b7(v, v) for all v E Aj, 

where 3 < 1 is a constant independent of j. In terms of matrices, 

0 < (?4(I-B/j)v) * v < ? (7XjV) * v for all v ERnk. 

Remark 5.2. Additive versions of the multigrid algorithm can also be defined 
(as developed in [4]). Theorem 3.1 of [4] guarantees that the additive version 
will lead to a preconditioned system which has a condition number which is 

independent of the number of levels. 
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Remark 5.3. We proved full regularity and approximation for the equivalent 
quadratic form (, *)-1/2 as part of the proof of (5.7). In contrast, it is unlikely 
that the original form 2'(., *) satisfies the full regularity and approximation 
condition (with constants that are independent of j ). 

We conclude this section with the proof of Lemma 5.1. Let a be in H- 1 (Q). 
We first prove the upper inequality. This is obvious for s = 0. Moreover, 

IIaI1Ki5O= sup 6O) 
EH1 ( a) I1ill, y 

< sup ( I '? < IlaI1.- 
OEHI (Y) 11011 1 

The upper inequality follows by interpolation. 
To prove the lower inequality of the lemma, we use a simultaneously bounded 

extension operator E: Hs (Q) F * Hs (5"), for s E [0, 11. The existence of such 
an extension is well known (cf. [14]). Then, 

=ll- sup (a, 0b) 
OE HS(Q) I I 1I 1 

<C sup (6,EkO)5 <C? cii.sii 

This completes the proof of Lemma 5.1. 

6. NUMERICAL COMPUTATIONS 

In this section, we provide the results of numerical examples illustrating the 
theory developed in earlier sections. We shall consider the integral equation 
(1.3) defined on Q= [-I, 1] x [-1, 1]. 

We consider the case when the subspaces are given by piecewise constant 
functions on a rectangular mesh. Let mk 2k+1 and define the kth mesh by 
partitioning the domain Q into mk X mk square subdomains of side length 
1 liMk. The approximation space Ak is defined to be the set of functions 
which are picewise constant with respect to this mesh. Equations involving Bo 
are solved exactly. 

Because of the fact that the mesh lines are parallel to the x and y axes, the 
integrals required for the entries of the matrix rk can be computed analytically. 
Moreover, since 2k is translationally invariant, its action can be computed in 
O(knk) operations by use of the fast discrete Fourier transform [6]. 

We will present results using the multigrid operator as a preconditioner in 
a preconditioned conjugate gradient iteration. One factor which can be used 
to interpret the efficiency of the proposed iterative scheme is the number of 
iterations required to achieve a certain accuracy. Let NI be the number of steps 
required to reduce the initial error by the factor of 10-6, i.e., 

(6.1) IIeNIII < 10-61eoll. 

Here, ei = u - vi, where u is the solution of (3.23) and vi is the ith iterate 
in the iterative algorithm. 

We compare two iterative schemes for computing the solution of (3.23). The 
first is the conjugate gradient algorithm using the multigrid preconditioner of 
Algorithm 3.1. The second is the conjugate gradient algorithm (CG) applied 
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TABLE 6.1. CG preconditioned with Bj 

1/h K(Bj 7j) NI 

16 1.92 7 
32 1.98 8 
64 2.00 8 
128 2.01 8 
256 2.01 8 

TABLE 6.2. CG directly applied to (3.23) 

1/h K (4) NI 

16 44.3 18 
32 89.0 26 
64 176.9 37 
128 344.9 51 
256 657.0 68 

directly to (3.23). In Tables 6.1 and 6.2, we report the condition numbers, 
K(Bj7'j) and K(7g), respectively, and the number of iterative steps required to 
satisfy the condition (6.1). The use of the multigrid preconditioner results in 
significant improvements in both the condition number as well as the number 
of iterations required to satisfy (6.1). Note the condition numbers in Table 6.1 
appear bounded. This is in agreement with the theoretical results of Theorem 
5.1. 
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